BO-Inject
Therapeutic injection of botulinum toxin

Neurology
BO-NanoInject and BO-SonoInject

Opting for maximum efficacy

When injecting botulinum toxin (BoNT), the exact placement of the cannula is extremely important in order to minimise side effects and achieve the best possible therapeutic effects with an economical dosage. In order to achieve optimum efficacy, the “Botulinum toxin working party” strongly recommends the administration of BoNT in the immediate vicinity of neuromuscular synapses, because at a distance of only 0.5 cm the effect is reduced by 50%. However, pinpoint administration requires a knowledge of the distribution of the neuromuscular synapses of the target muscle. The working party therefore recommends the use of electrostimulation and ultrasound as the most appropriate localisation technique.

With its NanoLine and Cornerstone Technology, PAJUNK® offers a totally convincing range of cannulas where precision and visibility are concerned during stimulation and under ultrasound. With these monopolar, echogenic cannulas, PAJUNK® has assumed a pioneering role in regional anaesthesia. BO-SonoInject and BO-NanoInject are two cannula types specially developed for the injection of BoNT, combining the expertise of PAJUNK® with the special requirements of this form of administration.

Application area for BoNT

- Spasticies of the upper and lower extremities
- Focal dystonia
The product variants

Both cannula types are in each case available in two alternative variants:

- With EMG cable for a combined application of electromyography and muscle stimulation
- With stimulation cable for nerve stimulation (in combination with MultiStim Switch)

BO-NanoInject

Bevelled tip with back cut

EMG cable

Stimulation cable

BO-SonoInject

Cornerstone Reflectors and bevelled tip with back cut

EMG cable

Stimulation cable
BO-NanoInject

High-precision stimulation and perfect slide properties

The very thin NanoLine coating of BO-NanoInject, a technology specially developed and patented by PAJUNK®, ensures maximum insulation of the cannula. Nerve or muscle stimulation is provided solely via the electrically conductive contact point and the grinding areas on the cannula tip, creating a high-precision electrical field.

- **Increase of application safety**
- **Precise stimulation and excellent gliding properties with NanoLine** (only at PAJUNK®)
- **Magnetisable cannula**
- **Combination of EMG and muscle stimulation**
- **Optimum puncture accuracy by precise nerve stimulation**

Small dead space volume
Specially shaped cannula hub

- BoNT left in the cannula is minimised
- Optimises cost-effectiveness

Alternative connectors

- With EMG cable
- With stimulation cable

90 cm long EMG connection cable
(alternative type with stimulation cable)

- Increases the flexibility for the user
The advantages of NanoLine coating

Precise stimulation
The very thin NanoLine coating guarantees total insulation except for the entire grinding area and the bare tip.
- Allows precise derivation of the EMG signal or similarly exact stimulation

Minimum coating thickness
The outer diameter stays unchanged in contrast to conventional coating processes.
- Evenly smooth surface
- NanoLine cannulas glide easily through tissue
- Do not require great puncture force

Coated inner lumen
The thin coating technology used allows coated inner lumen
- Smooths out any unevenness
- Allows better flow of the BoNT
BO-SonoInject

Combines benefits of ultrasound and electrostimulation

The use of ultrasound is recommended in principle for all BoNT injections, as it allows the simple, non-invasive visualisation of muscles, glandular tissue, and the surrounding structures in real time. The main benefit is that the whole process of administration of botulinum toxin can be visualised by ultrasound with due allowance for the patient’s individual anatomy. Verification and documentation of the injection site and the quantity injected are also possible. With BO-SonoInject, PAJUNK® offers a special cannula for the combined use of ultrasound and electrostimulation and thus provides the user with double security.

Specific benefits of ultrasound technology
- Real-time visualisation of the target muscles and the cannula
- Visualisation of bones, blood vessels and nerves in the immediate vicinity of the target muscle
- Real-time visualisation of the emission and distribution of BoNT
- Allows cost reductions
- Economical dosage of BoNT

Alternative connectors
- With EMG cable
- With stimulation cable

90cm long EMG connection cable
(alternative type with stimulation cable)
- Increases the flexibility for the user
Echogenic Cornerstone Geometry
The embossed structures in the Cornerstone Reflectors form three surfaces which meet each other at a 90° angle.

➤ This guarantees direct or indirect reflection of the ultrasound waves even at very steep insertion angles

OptiView
The first two cannula segments – both 10mm long – are arranged 360° evenly around the cannula shaft. Quantity and arrangement are precisely aligned to the cannula diameter.

➤ Reflection of the ultrasonic waves on a length of 20 mm

OptiView
➤ Optimum cannula visibility from shaft to tip, irrespective of the insertion angle

➤ Perfect cannula identification is guaranteed in every position

A test with various insertion angles, rising at 20° increments to 60° confirms that BO-Sonoinject cannulas are highly visible, irrespective of the insertion angle.
BO-Inject All information at a glance

BO-Inject

<table>
<thead>
<tr>
<th>Product</th>
<th>Size</th>
<th>Item No.</th>
<th>PU</th>
<th>Size</th>
<th>Item No.</th>
<th>PU</th>
</tr>
</thead>
<tbody>
<tr>
<td>BO-SonoInject</td>
<td>27G x 37 mm</td>
<td>001188-90</td>
<td>10</td>
<td>27G x 37 mm</td>
<td>001191-90</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>25G x 60 mm</td>
<td>001188-89</td>
<td>10</td>
<td>25G x 60 mm</td>
<td>001191-89</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>25G x 50 mm</td>
<td>001188-81</td>
<td>10</td>
<td>25G x 50 mm</td>
<td>001191-81</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>25G x 37 mm</td>
<td>001188-82</td>
<td>10</td>
<td>25G x 37 mm</td>
<td>001191-82</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>24G x 50 mm</td>
<td>001188-85</td>
<td>10</td>
<td>24G x 50 mm</td>
<td>001191-85</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>24G x 40 mm</td>
<td>001188-78</td>
<td>10</td>
<td>24G x 40 mm</td>
<td>001191-78</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>24G x 25 mm</td>
<td>001188-75</td>
<td>10</td>
<td>24G x 25 mm</td>
<td>001191-75</td>
<td>10</td>
</tr>
</tbody>
</table>

BO-NanoInject

<table>
<thead>
<tr>
<th>Size</th>
<th>Item No.</th>
<th>PU</th>
</tr>
</thead>
<tbody>
<tr>
<td>27G x 37 mm</td>
<td>001168-90</td>
<td>10</td>
</tr>
<tr>
<td>25G x 50 mm</td>
<td>001168-81</td>
<td>10</td>
</tr>
<tr>
<td>25G x 37 mm</td>
<td>001168-82</td>
<td>10</td>
</tr>
<tr>
<td>24G x 50 mm</td>
<td>001168-85</td>
<td>10</td>
</tr>
<tr>
<td>24G x 25 mm</td>
<td>001168-75</td>
<td>10</td>
</tr>
</tbody>
</table>

Studies

- **Fujimoto H., Mezaki T., Yokoe M., Mochizuki H.** Sonographic guidance provides a low-risk approach to the longus colli muscle, Movement Disorders 2012; 27(7): 928–29
- **Volkmann J.** Extrapyramidalmotorische Störungen Dystonie, Entwicklungsstufe S1, Leitlinien für Diagnostik und Therapie in der Neurologie, Deutsche Gesellschaft für Neurologie 2012 September: 1–11

PAJUNK® GmbH
Medizintechnologie
Karl-Hall-Strasse 1
D-78187 Geisingen/Germany
Phone +49 (0) 77 04/92 91-0
Telefax +49 (0) 77 04/92 91-6 00
www.pajunk.com

PAJUNK® Medical Produkte GmbH
D.A.CH • BeNeLux
Karl-Hall-Strasse 1
D-78187 Geisingen/Germany
Phone +49 (0) 77 04/80 08-0
Telefax +49 (0) 77 04/80 08-150
www.pajunk.com